
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 2, February (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 128

Platform Categorization with Runtime Ideals besides

Its Presentation to Software Thieving Finding

Suresh C

Department of computer Science, Ganadipathy Tulsi’s Jain Engineering College, Vellore, India.

Muthukumar S

Associate professor, Department of computer Science, Ganadipathy Tulsi’s Jain Engineering College, Vellore, India.

Appandairaj C

Assistant professor, Department of computer Science, Ganadipathy Tulsi’s Jain Engineering College, Vellore, India.

Abstract – Identifying similar or identical code fragments

becomes much more challenging in code theft cases where

plagiarizers can use various automated code transformation or

obfuscation techniques to hide stolen code from being detected.

Source code plagiarism has become a serious problem for the

industry. Although there exist many software solutions for

comparing source codes, they are often not practical. This paper

presents a novel dynamic analysis approach to software

plagiarism detection. Previous works in this field are largely

limited in that (i) most of them cannot handle advanced

obfuscation techniques, and (ii) the methods based on source code

analysis are not practical since the source code of suspicious

programs typically cannot be obtained until strong evidences have

been collected. Based on the observation that some critical

runtime values of a program are hard to be replaced or eliminated

by semantics-preserving transformation techniques, we introduce

a novel approach to dynamic characterization of executable

programs. Our value-based plagiarism detection method (VaPD)

uses the longest common subsequence based similarity measuring

algorithms to check whether two code fragments belong to the

same lineage. We evaluate our proposed method through a set of

real-world automated obfuscators.

Index Terms – Software plagiarism, dynamic code analysis.

1. INTRODUCTION

Software plagiarism and piracy is a serious problem which is

estimated to cost the software industry billions of dollars per

year [6]. Software piracy for desktop computers has gained

most of the attention in the past. However, software plagiarism

and software piracy is also a huge problem for companies.

Software theft means the unauthorized or illegal copying,

sharing or usage of copyright-protected software programs.

Software theft may be carried out by individuals, groups or, in

some cases, organizations who then distribute the unauthorized

software copies to users. Software theft is committed when

someone performs any of the following: (i) Steals software

media, (ii) Deliberately erases programs, (iii) Illegally copies

or distributes a program, (iv) Registers or activates a software

program illegally. Software plagiarism, or code theft, is the

copying of computer programs without attribution, a

phenomenon that has become widespread with the advent of

the internet and easy access to and transmission of software.

Identifying same or similar code fragments among different

programs or in the same program is very important in some

applications. For example, duplicated codes found in the same

program may degrade efficiency in both development phase

(e.g., they can confuse programmers and lead to potential

errors) and execution phase (e.g., duplicated code can degrade

cache performance). In this case, code identification techniques

such as clone detection can be used to discover and refactor the

identical code fragments to improve the program. For another

example, same or similar code found in different programs may

lead us to even more serious issues. If those programs have

been individually developed by different programmers, and if

they do not embed any public domain code in common,

duplicated code can be an indication of software plagiarism or

code theft. In code theft cases, determining the sameness of two

code fragments becomes much more difficult since plagiarizers

can use various code transformation techniques including code

obfuscation techniques to hide stolen code from detection. In

order to handle such cases, code characterization and

identification techniques must be able to detect the identical

code (i.e., two code fragments belonging to the same lineage)

without being easily circumvented by code transformation

techniques.

2. OVERVIEW OF EXISTING SYSTEMS

The techniques for source code comparison originated with the

string-based algorithms that were used for detecting plagiarism

of ordinary English prose. Software systems often contain

portions of code that are similar to other systems, and these

common portions are referred to as code clones [5]. Detecting

clones in source code has been recognized as an important issue

in software analysis. Most of the existing approaches to detect

plagiarism employ counting heuristics or string matching

techniques to measure similarity in source code [1]. Source

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 2, February (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 129

code can be represented as graphs. Existing graph theory

algorithms can then be applied to measure the similarity

between source code graphs [2].

There are methods based on Program Dependency Graph

(PDG) which cannot detect similarities if semantics preserving

transformation is applied on the source code. Birthmarks based

on dynamic analysis can also be used to detect plagiarism.

Whole Program Path (WPP) birthmarks represent the dynamic

control flow of a program are robust to some control flow

obfuscation, but vulnerable to semantics-preserving

transformations. There are variety of dynamic birthmarks

based on system call, sequence of API function call and

frequency of API function call. They are also vulnerable to real

obfuscation techniques [14]. Chanet al [15] proposed a

birthmark system for JavaScript programs based on the run-

time heap. The heap profiler takes multiple snapshots of the

JavaScript program during execution. The graph generator

generates heap graphs containing objects created during

execution as nodes. Plagiarism is detected from the heap graphs

of genuine and suspected programs.

3. PROPOSED APPROACH

We are analyzing the dynamic behaviour of source codes to

capture the similarities among them. Our approach uses

method calling structure and the values of key variables in

order to carry out different analyses. To our best knowledge,

our work is the first one exploring the existence of the core-

values. By exploiting runtime values that can hardly be

changed or replaced, our code characterization technique is

resilient to various control and data obfuscation techniques. It

does not require access to source code of suspicious programs,

thus it could greatly reduce plaintiff’s risks through providing

strong evidences before filing a lawsuit related to intellectual

property.

4. DESIGN

Software theft has become a very serious concern to software

companies and open source communities. In the presence of

automated semantics-preserving code transformation tools, the

existing code characterization techniques may face an

impediment to finding sameness of plagiarized code and the

original. In this section, we discuss how we apply our technique

to software plagiarism detection. Later, we evaluate our

method against such code obfuscation tools in the context of

software plagiarism detection. Scope of Our Work: We

consider the following types of software plagiarisms in the

presence of automated obfuscators: whole-program plagiarism,

where the plagiarizer copies the whole or majority of the

plaintiff program and wraps it in a modified interface, and core-

part plagiarism, where the plagiarizer copies only a part such

as a module or an engine of the plaintiff program. Our main

purpose of VaPD is to develop a practical solution to real-world

problems of the whole-program software plagiarism detection,

in which no source code of the suspect program is available.

VaPD can also be a useful tool to solve many partial plagiarism

cases where the plaintiff can provide the information about

which part of his program is likely to be plagiarized. We

present applicability of our technique to core-part plagiarism

detection in the discussion section. We note that if the

plagiarized code is very small or functionally trivial, VaPD

would not be an appropriate tool.

5. RUNTIME VALUES

The runtime values of a program are defined as values from the

output operands of the machine instructions executed

programs; we observed that some runtime values of a program

could not be changed through automated semantics preserving

transformation techniques such as optimization, obfuscation,

different compilers, etc. We call such invariant values core-

values.

Core-values of a program are constructed from runtime values

that are pivotal for the program to transform its input to desired

output. We can practically eliminate noncore values from the

runtime values to retain core-values. To identify non-core

values, we leverage taint analysis and easily accessible

semantics-preserving transformation techniques such as

optimization techniques implemented in compilers. Let vp be a

runtime value of program P taking I as input, and f be a

semantics-preserving transformation. Then, the non-core

values have the following properties: (1) If vp is not derived

from I, vp is not a core-value of P; (2) If vp is not in the set of

runtime values of f (P), vp is not a core-value of P.

6. EXTRACTION OF RUNTIME VALUES

Since not all values associated with the execution of a program

are core-values, we establish the following requirements for a

value to be added into a value sequence: The value should be

output of a value-updating instruction and be closely related to

the program’s semantics.

Informally, a computer is a state machine that makes state

transition based on input and a sequence of machine

instructions. After every single execution of a machine

instruction, the state is updated with the outcome of the

instruction. Because the sequence of state updates reflects how

the program computes, the sequence of state-updating values is

closely related to the program’s semantics. As such, in value

based characterization, we are interested only in the state

transitions made by value-updating instructions. More

formally, we can conceptualize the state-update as the change

of data stored in devices such as RAM and registers after each

instruction is performed, and we call the changed data a state-

updating value. We further define a value-updating instruction

as a machine instruction that does not always preserve input in

its output. Being an output of a value updating instruction is a

sufficient condition to be a state updating value. Therefore, we

exclude output values of non-value- updating instructions from

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 2, February (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 130

a value sequence. In our x86 implementation, the value-

updating instructions are the standard mathematical operations

(add, sub, etc.), the logical operators (and, or, etc.), bit shift

arithmetic and logical (shl, shr, etc.), and rotate operations (ror,

rcl, etc.).

7. CORE PART PLAGIARISM

Core-part plagiarism is a harder problem. In such case, only

some part of a program is plagiarized. For example, a less

ethical developer may steal code from some open source

projects and fit the essential module into his project with

obfuscation. Let IPM and ISM be the input to the plagiarized

module and suspect module respectively, and V(x) be a value

based characteristic such as a value sequence extracted from x,

a program or a module.

Memory addresses or pointer values stored in registers or

memory locations are transient. For example, some binary

transformation techniques such as word alignment and local

variable reordering can change pointers to local variables or

offsets in stack; and heap pointers may not be the same next

time the program is executed even with the same input.

Therefore, we do not include pointer values in a refined value

sequence.

In our VaPD prototype, we implement a range checking based

heuristic to detect addresses. Our test bed dynamically

monitors the changes of memory pages allocated to the

program being analyzed, and it maintains a list of ranges of all

the allocated pages with write permission enabled. If a runtime

value is found to be within the ranges in the list, VaPD discards

the value, regarding the value as an address. Although this

heuristic may also delete some non-pointer values, it can

remove pointers to stack and to heap with no exception.

Address removal heuristic is applicable to both plaintiff and

suspect programs.

Our technique bears the following limitations. First, besides

the ability of extracting value sequences from the entire scope

of the plaintiff program, VaPD provides the partial extraction

mode in which it can extract value sequences from only a small

part of the program. Based on this, we discuss about the

feasibility of applying VaPD to the partial plagiarism detection

problems. However, we have not yet comprehensively

evaluated this issue with real world test subjects. In such case,

a more efficient and scalable program emulator or logger other

than QEMU may be needed. Second, VaPD may not apply if

the program implements a very simple algorithm. In such

cases, the value sequences can be too short, which increases

sensitivity to noises. Our metric is more likely to cause false

positives when a very short value sequence is compared to a

much longer one. Third, as a detection system, there exists a

trade-off between false positives and false negatives. The

detection result of our tool depends on the similarity score

threshold. Unfortunately, without many real-world plagiarism

samples which are often not available, we are unable to show

concrete results on such false rates. As such, rather than

applying our tool to “prove” software plagiarisms, in practice

one may use it to collect initial evidences before taking further

investigations, which often involve nontechnical actions.

8. CONCLUSION

Results show that it can greatly improve the performance of

social network analysis against state-of-the-art approaches we

will ready how to employ our approach in a hierarchical way

to reduce the memory overhead and evaluate its performance

gain graphically. Obfuscation resilient code characterization is

important for many code analysis applications, including code

theft detection. Motivated by an observation that some

outcome values computed by machine instructions survive

various semantics-preserving code transformations, we have

proposed a technique that directly examines executable files

and does not need to access the source code of suspicious

programs. Our results show that the value-based method is

effective in identifying software plagiarism.

9. FUTURE WORK

App repackaging, a form of software plagiarism, has become a

common phenomenon in the mobile app markets like Google

Play and Apple iTunes. Dishonest users may repackage others’

apps under their own names or embed different advertisements,

and then republish it to the app market to earn monetary profit.

Furthermore, to leverage the popularity of mobile apps to

increase the propagation of their malware, malware writers

may modify popular apps to insert malicious payloads into the

original apps. A common drawback is that most of them are not

obfuscation-resilient. Our research is obfuscation-resilient and

can be potentially applied to the smart phone app repackaging

detection. More recently, Huang et al developed a repackaging

detection evaluation framework so that different methods can

be systematically evaluated and compared, with obfuscations

applied. View Droid applied a interface based birthmark, which

is designed for user interaction intensive and event dominated

programs, to detect smart phone application plagiarism.

In this section, we discuss heuristics to refine value sequences.

An initial value sequence constructed through the dynamic

taint analysis may still contain a number of non-identical is to

compile the same source code with the same compiler with

different optimization switches enabled. Motivated by this

idea, we use several optimized executables of the same

program to sift non-core values out. With GCC and its five

selected optimization flags (-O0, -O1, -O2, -O3, and -Os), we

can extract five optimized value sequences from the plaintiff

program. Each optimized value sequence has been processed

with the sequential refinement while it is extracted. Then, we

compute a longest common subsequence of all the optimized

value sequences to retain only the common values in the

resulting value sequence. As we do not assume we have access

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 2, February (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 131

to the source code of suspect programs, this refinement

heuristic is only applicable to plaintiff programs.

REFERENCES

[1] Ali AMET, Abdulla HMD, Snasel V. Survey of plagiarism detection

methods. Asia Modelling and Symposium 2011. p.39-42.

[2] Graves JA. Source code plagiarism detection using a graph-based
approach. Master’s thesis. TennesseeTech. Univ., 2011.

[3] Jhi YC, Wang X, Jia X, Zhu S, Liu P, Wu D. Value-based program

characterization and its application to software plagiarism detection.
[4] Intl. Conf. on Soft. Engg. 2011. p.756-765. Jhi YC, Wang X, Jia X, Zhu

S, Liu P, Wu D. Value-based program characterization and its application

to software plagiarism detection.
[5] Koschke R. Frontiers of software clone management. Frontiers of

Software Maintenance 2008. p.119-128.

[6] Plagiarism Detection for Java Programs without Source Codes Anjali

V.a,*, Swapna T.R.a, Bharat Jayaramanb,2014

[7] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Behavior based software theft

detection. In ACM CCS, 2009.
[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalableand

accurate tree-based detection of code clones,” in Proceedings of the 29th

International Conference on Software Engineering (ICSE ’07), 2007, pp.
96–105.

[9] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating

transformations,” The University of Auckland, Tech. Rep.148, Jul. 1997.
[10] C. S. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,

resilient, and stealthy opaque constructs,” in Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’98), 1998, pp. 184–196.

[11] C. Wang, “A security architecture for survivability mechanisms,”Ph.D.

dissertation, University of Virginia, Charlottesville, VA,USA, 2001,
adviser-John Knight.

[12] C. Collberg, G. Myles, and A. Huntwork, “Sandmark–a tool for software

protection research,” IEEE Security and Privacy, vol. 1, no. 4, pp. 40–49,

2003.

[13] M. Madou, L. Van Put, and K. De Bosschere, “Loco: An interactive code

(de)obfuscation tool,” in Proceedings of the 2006 ACM
SIGPLANsymposium on Partial evaluation and semantics-based

program manipulation (PEPM ’06), 2006, pp. 140–144.

[14] Semantic Designs, Inc., “ThicketTM,” http://www.semanticdesigns.com
[15] Zelix Pty Lt, “Java obfuscator-ZelixKlassMaster,” online,

http://www.zelix.com/klassmaster/features.html.

Authors

Suresh C was born in Vellore, India, in 1990. He

received the B.E. degree in computer science and

engineering from Kings Engineering College,

Chennai. He currently pursuing M.E degree in

computer science and engineering from Ganadipathy

Tulsi’s Jain Engineering College, Vellore. His

current research interests include cloud computing,

enterprise application, big data, and software

engineering.

Muthu Kumar S was born on 1977. He received

the M.C.A. degree from Bharathidasan University.

He completed M.E degree in TCET; Vandavasi.He

currently works as associate professor in GTEC,

Vellore. He has total 15 years of experience. His

current research interests include Digital image

processing, Software quality assurance etc. He has

guided many UG and PG projects.

Appandairaj A was born in Arni, India, in 1982.

He received the M.Tech. degree in Computer

Science and Engineering from Dr.M.G.R

University, Chennai. He currently works as

assistant professor in GTEC, Vellore. His current

research interests include cloud computing, big

data. He has guided many UG and PG projects.

http://www.semanticdesigns.com/
http://www.zelix.com/klassmaster/features.html

